
Cost Scaling Quickest Flow Algorithms

Oliver Ren, Christopher Wang
oliveren@mit.edu, czw@mit.edu

December 18, 2017

Abstract

In this paper we consider two algorithms for the quickest flow problem with
integer arc costs that follow the same cost scaling framework. The algorithm
in [6] builds on a Goldberg-Tarjan Push-Relabel algorithm for minimum cost
flow. The algorithm in [7] uses the same framework to build on Cancel-and-
Tighten, a different Goldberg and Tarjan algorithm for minimum cost flow.
In this paper, we compare and contrast how [6] and [7] use this framework to
come up with quickest flow algorithms that have the same time complexity as
the minimum cost flow algorithms they are based on.

1 Introduction
Consider the problem of evacuating people from a building, with layout given by a
directed graph G = (V,E). How should we model this problem? Flows of people do
not move instantaneously across arcs, but instead require travel time. In the case of
evacuation, we care not only about the volume of flow pushed through the network
but also about the time it takes flow to move. Static flow networks have no notion
of time, so they cannot capture this consideration. Instead, we turn to dynamic flow
networks. In a dynamic flow network, each arc e has an associated cost τe, which is
the time needed to travel along the arc. In this paper we will focus on algorithms
for a particular dynamic flow problem: finding the quickest flow. We will define the
quickest flow problem in terms of time horizon T and flow value F . Let the time
horizon T be the time past which all flow has reached the sink. And, let the flow
value F be the volume of total flow which passes through the network. Then for a
flow value F , the objective of the quickest flow problem is to find the shortest time
horizon T such that F flow can be pushed through the network in T time.

Ford and Fulkerson discuss dynamic flow networks in [3]. To solve dynamic flow
problems with a discrete time horizon T , they use the method of time-expanded
graphs. This involves creating multiple copies of the network graph, one for each
instant in time. This approach has the advantage of turning dynamic flow problems
into a static flow problems, which have been heavily studied. However, it does not
give polynomial time algorithms.

In [6], Lin and Jaillet showed that the quickest flow problem with integer arc
costs can be solved in the same O (nm log(n2/m) log(nC)) time bound as one of
Goldberg and Tarjan’s cost scaling minimum cost flow algorithms. Their approach
made use of Goldberg and Tarjan’s Push-and-Relabel [5] algorithm to achieve this

1

bound. But, their algorithm is weakly polynomial, because it depends on log(nC),
where C is the maximum cost arc. Saho and Shigeno showed [7] that a strongly
polynomial O(nm2(log n)2) bound is possible by making use of a different Goldberg
and Tarjan cost scaling minimum cost flow algorithm: Cancel-and-Tighten [4]. For
the remainder of the paper, we will differentiate between the two quickest flow
algorithms [6][7] by referring to the Goldberg and Tarjan algorithm from which they
are adapted.

The rest of the paper is organized as follows: In section (2), we establish notation
and formally state the quickest flow problem. In section (3), we define the optimality
conditions under which a minimum cost static flow can be easily converted to a
quickest flow. In section (4), we describe the general framework that [6] and [7] both
make use of, as well as the ways in which Push-Relabel and Cancel-and-Tighten are
incorporated. In sections (5-6), we discuss the correctness and time complexity of
each algorithm.

2 Background

2.1 Problem Description

Let the network G = (V,E) be a directed graph with nodes V and arcs E. In this
paper, we will only consider networks with a single source s and a single sink t.
Each arc e has a capacity ue and a cost τe. Because [7] and [6] focus on graphs with
integer cost arcs, for the rest of the paper, it will be implicitly assumed that all the
costs τe are integers. For each node w, we will define the set of arcs that flow into
w as δ−w and the set of arcs that flow out of w as δ+w .

Definition 2.1 (Static Flow). A static flow x does not have any notion of time:
there is no cost τe per arc. Let xe be the flow on arc e. In static flow networks, a
flow x is called feasible if it satisfies flow conservation (1) and capacity constraints
(2). ∑

e∈δ+w

xe −
∑
e∈δ−w

xe = 0,∀w ∈ V \ {s, t} (1)

0 ≤ xe ≤ ue,∀e ∈ E (2)

For a feasible flow x, the value of the flow v is the sum of the flow which leaves s.
That is, v =

∑
e∈δ+s xe. If only (2) is satisfied, but the excess (flow into a node minus

flow out) for every node is non-negative, then x is called a preflow. If a node has
non-negative excess, it is called an active node.

Definition 2.2 (Dynamic Flow). A dynamic flow on G is given by a set of functions
fe(t) : R+ → R that specify the rate of flow entering arc e at time t. Let ρw(t) be
the flow excess on a node w ∈ V at time t. Then,

ρw(t) :=
∑
e∈δ−w

∫ t−τe

0

fe(s)ds−
∑
e∈δ+w

∫ t

0

fe(s)ds (3)

The dynamic flow fe(t) is feasible if the excess flow ρw(t) is non-negative for all
w ∈ V and the capacity constraints (4) are satisfied:

0 ≤ xe ≤ ue,∀e ∈ E, t ≥ 0 (4)

2

The value F of a feasible dynamic flow is the volume of flow that leaves s.

Definition 2.3 (Temporally Repeated Flow). A temporally repeated flow is a dy-
namic flow which is generated by a static s-t flow x. It is known that x can be
decomposed into a set of paths P and cycles C [1]. Then, let xP be the amount of
flow in x on a path P . Given a feasible static flow x, a temporally repeated flow is
constructed by pushing flow at a constant rate of xP on path P for every P ∈ P .
The duration that we push flow on P is such that all flows can exit P by time T .
That is, we should push flow from s until time T −

∑
e∈P τe.

Quickest Flow

The quickest flow problem tries to find the shortest time horizon T needed to send
a flow x of value F through the network. This is closely related to the dynamic max
flow problem, the objective of which is to find the largest flow value F that can be
sent in a given time horizon T . Ford and Fulkerson [3] were the first to show that
the optimal solution to the dynamic max flow problem can be given as a temporally
repeated flow, generated from a static flow x. The relationship between dynamic
max flow and quickest flow is worth exploring as it can be exploited to show that
both problems have an optimal solution that is a temporally repeated flow.

Given a static flow x with flow value v, the flow value F (T) of a temporally
repeated flow with time horizon T is given by:

F (T) = T · v −
∑
e∈E

τe · xe. (5)

The above expression comes from the definition of temporally repeated flows, namely,
the fact that we push flow at a rate x(P) along P for T −

∑
e∈P τe time.

Given Ford and Fulkerson’s result, the problem of finding the dynamic max flow
is the problem of finding a feasible flow x that gives F ∗(t), the maximum value of
(5). As the time horizon T increases, the maximum flow F ∗(T) is non-decreasing.
Burkard et al. showed this formally in [2]. So then, finding the quickest flow is the
problem of finding a feasible flow x such that T is minimized, where the value of the
dynamic flow must be at least F :

T · v −
∑
e∈E

τe · xe ≥ F (6)

Rearranging, this becomes the problem of finding a feasible flow x that minimizes
the time T :

F +
∑

e∈E τe · xe
v

. (7)

Note that in the above, v and
∑

e∈E τe ·xe are implicitly related by the fact that v is
the value of the flow x. Moreover, the

∑
e∈E τe ·xe term is the cost of the flow. If we

are trying to minimize the above quantity, then, for a given v, the cost of the flow
must be minimized. For a given flow value v, let us say that g(v) := min

∑
e∈E τe ·xe,

where x is a feasible flow of value v. Then, the problem of finding the quickest flow
is the problem of finding the minimum T (v), where

T (v) :=
F + g(v)

v
(8)

3

In other words, the quickest flow is generated by the static flow x∗ if x∗ gives T ∗(v)
and

T ∗(v) := min
v
T (v)

2.2 Network Concepts

Residual Network

Residual networks are defined as they were in class. Given a flow x, the residual
network is G(x) = (V,E(x)), where E(x) = EF (x)∪EB(x). The set of forward arcs
EF (x) is {e ∈ E|xe < ue}. The residual capacity ue(x) of e ∈ EF (x) is given by
ue(x) = ue − xe. The cost for a forward arc is still τe. The set of backward arcs
EB(x) is {(w′, w) ∈ E|e = (w,w′) ∈ E, xe ≥ 0}. The residual capacity ue(x) of
e ∈ EB(x) is given by ue(x) = xe. The cost of a backwards arc is −τe.

Given a network G and flow x, dst is defined as the minimum cost path from s
to t in the residual network G(x) that does not contain any cycles. dts is defined
similarly. Notably, because dst and dts by definition contain no cycles, they cannot
be infinite in length.

Arcs with a negative reduced cost τπe < 0 are called admissible. The admissible
graph is the subgraph of the residual network that only contains admissible arcs.

Node Potentials

Let π be a function for a network G that is defined for all nodes w ∈ V . Let the
potential of w, πw, be defined as the result of applying π on a node w. Then, the
reduced cost τπe of an arc (w,w′) is defined as: τπe := τe−πw +πw′ . It is known that
a minimum cost flow x is one in which there exists a potential function π for the
residual graph G(x) such that all the reduced costs are non-negative.

Subtracting flows

Given two static flows x and x′, where v(x) > v(x′), define the flow (x − x′) as
one where the flow across each arc is the difference between the flow across that
arc in x and the flow across that arc in x′. More formally, for e = (w,w′) ∈ E,
(x − x′)e = xe − x′e. If this value is positive, then we assign xe − x′e flow to the
forward arc e. If it is negative, then we assign x′e − xe flow along the backwards arc
(w′, w). Notably, in the residual graph G(x), (x − x′) is a feasible flow. This flow
can be decomposed into P(x′) and C(x′).

3 Optimality Conditions
Lin and Jaillet developed the cost scaling framework used in [6] and [7] after discov-
ering a connection between a minimum cost static flow and a temporally repeated
quickest flow [6].

Theorem 3.1. Let the static flow x generate the temporally repeated flow f̃e(t).

4

Then, f̃e(t) is a quickest flow iff

(OC1) x is a min-cost flow (9)

(OC2)
F +

∑
e∈E τe · xe
v(x)

≥ −dst (10)

(OC3)
F +

∑
e∈E τe · xe
v(x)

≤ dst (11)

Proof. First, we show that the three conditions are necessary. Suppose that the
static flow x with value v generates a quickest flow. Then, v and x give the minimum
value of T ∗(v) as seen in (8). Then, x must be a minimum cost flow, because the
numerator of T (v) is the sum of F and the minimum cost of the flow with value v.
If there were some lower cost flow x∗, then T ∗(v) would not be optimal. So (OC1)
holds.

Now, we will show that (OC2) and (OC3) are necessary. The value T ∗(v) is
a minimum if adding a small |ε| > 0 amount of flow results in T (v + ε) ≥ T ∗(v).
We show that this implies (OC2) by considering the case of adding positive ε flow.
Consider T (v + ε) and the associated flow x′ with flow value v + ε. Then, x′ is also
a min cost flow, so it is composed of (1) some flow x with value v and (2) ε flow
pushed along dst, where dst is the min cost path in the residual graph G(x). Then,
g(v + ε) = g(v) + ε · dst. So, because T ∗(v) is minimal,

F + g(v)

v
≤ F + g(v) + ε · dst

v + ε

⇒ (v + ε)(F + g(v))

v
− F + g(v) ≤ ε · dst

⇒ ε · (F + g(v))

v
≤ ε · dst

⇒ F + g(v)

v
≤ dst

(OC3) can be proved similarly by considering the case when ε is negative.
Now, we show that the three conditions are sufficient. Suppose that the three

conditions hold for some x with flow value v(x). For the purposes of contradiction,
assume that there exists a flow x∗ with flow value v(x∗) that satisfies the three
conditions and

F +
∑

e∈E τe · xe
v(x)

>
F +

∑
e∈E τe · x∗e
v(x∗)

(12)

Now, we consider three cases. In the first case, if v(x) = v(x∗), then
∑

e∈E τe · xe
must not be a min-cost flow, which contradicts (OC1). Otherwise, if v(x∗) > v(x),
then recall that the flow (x∗−x) can be decomposed into paths P(x), each of which
carry flow (x∗ − x)P . Then,

∑
P∈P(x)

(∑
e∈P

τe

)
(x∗ − x)P ≥

∑
P∈P(x)

dst(x)(x∗ − x)P

= dst(x)(v(x∗)− v(x))

5

But, for any path P ∈ P(x), if (x∗ − x)P > 0, then the reverse path
←
P is a t − s

path in the residual graph. So

∑
P∈P(x)

(∑
e∈P

τe

)
(x∗ − x)P =

∑
P∈P(x)

−∑
e∈
←
P

τe

 (x∗ − x)P

≤
∑

P∈P(x)

−dts(x∗)(v(x∗)− v(x))

= −dts(x)(v(x∗)− v(x))

Then, dst(x) ≤ −dts(x∗). But then, from (OC2),

F +
∑

e∈E τe · xe
v(x)

>
F +

∑
e∈E τe · x∗e
v(x∗)

≥ −dts(x∗) because x∗ satisfies (OC2)
≥ dts(x)

But, this implies that F+
∑

e∈E τe·xe
v(x)

> dts(x), which contradicts (OC3).
Using a similar argument, in the case when v(x) > v(x∗), we find that dst(x) ≤

−dts(x). Then, we can reach a contradiction of (12) by decomposing (x − x∗) into
a flow on a cycle C ∈ C(x∗). [7]

4 Algorithm Descriptions

4.1 Framework

Now we describe the general cost scaling framework that both [6] and [7] make
use of. The two papers each modify a cost scaling, minimum cost flow algorithm
by adding a step to the scaling phase. This step ensures that when the algorithm
finishes, it will have found a flow that satisfies the optimality conditions discussed in
section (3). Over the course of the algorithms’ run, the flows which the algorithms
find do not satisfy the optimality conditions exactly. Rather, they will obey certain
approximate optimality conditions, which we will detail in Section 5.1, that give rise
to the optimality conditions for quickest flow when ε is small enough.

During each scaling phase, both of the quickest flow algorithms will find what
is called an ε optimal flow. An ε optimal flow is one where the reduced cost of each
arc e with respect to a potential function π is greater than −ε:

∀e ∈ E, τπe > −ε

Both algorithms start by finding a minimum cost flow x with flow value F
3nC

where
F is the flow value we are trying to get through the network as fast as possible and
C is the maximum cost τe of an arc e ∈ E. Then by defining a potential function π
which equals 0 for each arc, we can say that x is ε optimal for ε = C with respect
to the potential function π, because each of the reduced costs will be greater than
−C.

Each of the scaling phases reduces the value of ε by half in order to get closer
and closer to the optimal flows. Because the costs of every arc is an integer, once
we have ε < 1

n
, we know that we have found a min cost flow.

6

Below, we list out the general framework of the two quickest flow algorithms in
[6] and [7] using the general sub-procedure names Refine, Reduce Gap, and Final
Step, which we will describe in detail immediately after.
ε← C
Find min cost flow x with v(x) = F

3nε

Set πw = 0 for all w ∈ V
Modify π and x using Reduce Gap
while ε ≥ 1/(8n) do

ε̃← ε
while ε ≥ ε̃/2 do

Modify π, ε, and x using Refine
end while
Modify π and x using Reduce Gap

end while
Modify π and x using Final Step

4.2 Refine

The goal of the Refine step is to take a 2ε optimal flow and modify x and π so
that we are left with a ε optimal flow. The two algorithms take somewhat similar
different approaches to solving this problem.

Push-Relabel approaches this problem by starting with a 2ε optimal flow x with
respect to potential function π, immediately cutting ε in half and then modifying
x and π accordingly so that we are left with an ε optimal flow x′ with respect to
potential function π′.

Cancel-and-Tighten takes the approach of iteratively taking an ε optimal flow x
and altering x and π to reduce ε by a factor of (1 − 1

n
) until we can go from a 2ε

optimal flow to an ε optimal flow.

4.2.1 Push-Relabel

Suppose we start with a min cost flow x with respect to a potential function π for
a 2ε optimal flow. In order to get an ε optimal flow, we will first create a preflow
and then move the excess around until we get a circulation again. In our preflow,
we will set the flow on any arc e to 0, if e has a positive reduced cost. We fully
saturate the flow on any arc e with a negative reduced cost. If τπe > 0, then xe = 0;
if τπe < 0, then xe = ue.

Now, we will iterate through the active nodes w and run one of two procedures
depending on the reduced cost of the arcs that come out of w, appropriately called
push and relabel.

The goal of these procedures is to either move the excess flow away from s or
relabel the potential of active nodes until there are no active nodes left. When there
are no more active nodes, we will have an ε optimal flow because the total sum of
the excess in the graph must be 0 as every arc (w,w′) contributes positively to ρ(w′)
and negatively to ρ(w) and so

∑
w∈V ρ(w) telescopes to 0.

We run push if there is an arc e = (w,w′) such that e is admissible. During push,
we send flow with value equal to

min{ρ(w), ue}

7

where ρ(w) is the excess at w from w to w′.
We run relabel otherwise, which means that there is no arc e = (w,w′) such that

e is admissible. During relabel, we add ε to the potential of w, so

πw := πw + ε.

This gives a ε optimal flow because push does not change reduced costs, and
when we run relabel on a node w, arcs e = (w′, w) will have their reduced costs
increased and arcs e = (w,w′) will have reduced costs > −ε. This is true, because
before the relabeling, the reduced cost of e was > 0 and so after the relabeling, the
reduced cost will be > −ε.

4.2.2 Cancel-and-Tighten

Suppose we are starting with an ε optimal flow x and a potential function π. First,
we find another ε optimal flow by repeatedly sending flow along cycles C in the
admissible graph. For each cycle C, we send a flow with value

min{ux(e)|e ∈ C}

until there are no more cycles in the admissible graph.
After doing this, we will be left with an acyclic admissible graph. This means

that we can topologically sort all the nodes left in the admissible graph in order to
give each node w a rank h(w) which corresponds to its ordering in the topological
sort. For all these nodes w, we will update their potential function πw according to

πw := πw +
h(w)ε

n
.

This will reduce our ε optimal flow to a (1 − 1
n
)ε optimal flow. This follows

immediately from the definition of reduced cost because if an arc e = (w,w′) is
admissible, then h(w) + 1 ≤ h(w′) and if e = (w,w′) is not admissible, then τπe > 0.

Then, we can go onto the next iteration of canceling cycles and tightening the
potential function, but this time we set ε := (1 − 1

n
)ε. Thus, as we iterate, we

continue getting tighter and tighter optimal flows. In this way, we can reduce a 2ε
optimal flow to a ε optimal flow.

4.3 Reduce Gap

The Reduce Gap step alters the flow x and the potential function π in order to ensure
that T (v) lies within the bounds given by the approximate optimality conditions.
During the Reduce Gap step, we alternate between a flow step: sending flow from
s to t along paths in the admissible graph, and a potential step: increasing the
potential of nodes in the admissible graph reachable from s.

Let us call the flow at the beginning of the Reduce Gap step x. Suppose, we
are at the start of a flow step. Let us label the current flow x′. We upper bound
the amount of flow sent during a flow step with a function of x′ and π that we call
∆(x′, π). Now, we repeatedly find s − t paths P in the admissible graph and push
along P a flow of value

min {min{ux(e))|e ∈ P},∆(x′, π)− (v(x)− v(x′))}

8

until the sum of the additional flow pushed equals ∆(x′, π) or there are no more
s− t paths in the admissible graph.

During a potential step, the potential of any node w reachable from s, not in-
cluding s, has its potential increased by ε. So, for all such w,

πw := πw + ε.

The major differences between the two algorithms come from their respective
formulas for ∆(x′, p) and the point at which to stop alternating between flow steps
and potential steps. These differences come about because the two algorithms have
slightly different approximate optimality conditions, so they need their intermediate
flows to fall within different bounds.

4.3.1 Push-Relabel

For Push-Relabel,

∆(x′, π) :=

(
F +

∑
e∈E τe · xe

)
− (πs − πt + 5nε) · v(x)

6nε
.

And we stop the Reduce Gap step once

F +
∑

e∈E τe · xe
v(x)

− (πs − πt) ≤ 7nε.

4.3.2 Cancel-and-Tighten

For Cancel-and-Tighten,

∆(x′, π) :=

(
F +

∑
e∈E τe · xe

)
− (π−πt + (3n+ 1)ε) · v(x)

4nε
.

And we stop the Reduce Gap step once

F +
∑

e∈E τe · xe
v(x)

− (πs − πt) ≤ (3n+ 1)ε.

4.4 Final Step

The procedure for Final Step is the same for both algorithms. Final Step makes one
final modification to a min flow x that follows approximate optimality conditions.
This results in a flow x∗ that satisfies the actual optimality conditions, as defined in
Section 3.

First, we need to compute dst, which is the shortest path from s to t in the
residual graph G(x). Then, we will consider the subgraph Gd(x) which consists of
only arcs on a shortest path from s to t.

If dst <
F+

∑
e∈E τe·xe
v(x)

, then find a max s− t flow in Gd(x) and send the maximum
flow from s to t to get the flow x∗. Otherwise, do nothing and set x∗ := x. A
temporally repeated flow of x∗ will be a quickest flow.

9

5 Correctness Proofs
In this section, we will show that the optimality conditions from section (3) will be
met at the end of both algorithms. We do this by showing that at the end of each
Refine and Reduce-Gap step, certain approximate optimality conditions hold. And
after the final step, these approxiate optimality conditions give rise to the optimality
conditions defined in Section 3 that guarantee a min cost flow is also a quickest flow.

5.1 Approximate Optimality

As long as certain approximate optimality conditions are met, actual optimality will
be achieved when the algorithm terminates. Let c1, c2 be functions of n that differ
between Push-Relabel and Cancel-and-Tighten.

(AOC1) τπe ≥ −ε,∀e ∈ E(x)

(AOC2)
F +

∑
e∈E τe · xe
v(x)

≥ πs − πt + c1ε

(AOC3)
F +

∑
e∈E τe · xe
v(x)

≤ πs − πt + c2ε

For Push-Relabel, c1 := 5n, c2 := 7n and for Cancel-and-Tighten, c1 := 3n, c2 :=
3n+ 1. Again, the difference in bounds is due to the different ways each algorithm
uses the approximate optimality conditions.

A flow and potential that satisfy (AOC1) is called ε optimal. As mentioned in
Section 4.1, if ε < 1

n
then we will have found a min-cost flow.

But why do (AOC2) and (AOC3) make sense as approximations for (OC2) and
(OC3)? Let’s examine (OC2) first. Assuming that (AOC1) holds, then

−dts = −
∑

e∈Pts(x)

τe = −

 ∑
e∈Pts(x)

τπe + πs − πt

≤ πs − πt + (n+ 1)ε

It is immediately apparent that (AOC1) and (AOC2) imply that (OC2) holds
since n is always positive, so c1ε > (n+ 1)ε for both values of c1. Therefore, as long
as both algorithms maintain (AOC1) and (AOC2) throughout, when the algorithms
terminate with an ε < 1

n
, both (OC1) and (OC2) will hold.

Similarly, we can show that

dst ≥ πs − πt − (n− 1)ε.

This will be used later on to show that as long as (AOC3) holds before we run Final
Step, then after we run Final Step, we will have found a flow where (OC3) also holds,
and so we will have found a min cost flow that can be temporally repeated to obtain
a quickest flow. Specifically, this means that as long as (AOC3) holds after each
Reduce Gap phase, in addition to maintaining (AOC1) and (AOC2), our algorithm
will terminate with a quickest flow.

10

5.2 Refine

We showed in Sections 4.2.1 and 4.2.2 that after each Refine step, (AOC1) holds.
In this section, we bound T (V) and show that (AOC2) holds. In addition, we will
maintain a looser upper bound than (AOC3) during the Refine step, but we will
tighten the upper bound to (AOC3) during the Reduce Gap step. Intuitively, these
proofs will rely on consequences of only running push and relabel on active nodes.

5.2.1 Push-Relabel

The refine step saturates all admissible arcs and then pushes flow and relabels po-
tentials until all excess flow has been distributed. This procedure is the same as
Goldberg and Tarjan’s. Let x be the flow before some excess flow is distributed and
x′ be the flow afterwards. The goal of this step is to get a tighter bound on T (v),
which means that we need to show that T (v) is growing since it needs to satisfy a
higher lower bound. At the same time, we also need to show that T (v) does not
grow too fast since it also needs to satisfy a tighter upper bound.

By analyzing the flow in x − x′, whose value must be positive because we only
send flow from active nodes along admissible arcs, we are able to bound T (v) after
Refine is over,

πs − πt + 5nε ≤ T (v) ≤ πs − πt + 18nε.

The proof of this bound involves using the acyclic nature of the admissible graph
after each Refine step and the fact, as proven by Golberg and Tarjan, that each
node’s potential can increase by at most 3nε after Refine to bound how much T (v)
can change after Refine. [5] The full proof, which can be found in the paper by Lin
and Jaillet, uses these facts to bound the value of the new flow x′ between functions
of the value of the old flow x in order to bound the value of πs′ − πt′ using πs − πt
and thus bound T (v). [6]

5.2.2 Cancel-and-Tighten

The proof of how (AOC1) is satisfied is shown above in Section 4.2.2. We will show
here that the other two approximate conditions are satisfied. We want to show that
at the end of the Refine step, (AOC2) holds and (AOC3) is close to being satisfied.
Say that we begin the refine step with an ε optimal flow and end with an ε′ optimal
flow. As mentioned above, each cancel step will reduce ε by a factor of (1 − 1

n
), so

(1 − 1
n
)kε = ε′. At the lth iteration of the Cancel step, we modify πw for all nodes

w ∈ V by at most (1− 1
n
)lε. So, we have

|(πs − πt)− (π′s − π′t)| ≤
k∑
l=1

(1− 1/n)lε0

= (n− 1)(ε0 − ε).

Then, v(x) = v(x′), so (x− x0) can be decomposed into flows on cycles in C(x0).∑
e∈E(x)

τπe (x− x0)(e) ≥
∑

e∈E−(x)

τπe (x− x0)(e)

≥ −ε0(n− 1)v(x).

11

Then,

F +
∑

e∈E τe · xe
v(x)

>
F +

∑
e∈E τe · xe − nεxe
v(x)

=
F +

∑
e∈E τe · xe − nεv(x)

v(x)
.

5.3 Reduce Gap

Our goal in this section is to show that after Reduce Gap, we will be able to tighten
the upper bound guarantee after Refine so that (AOC3) holds. However, we need
to be careful that we do not invalidate (AOC1) or (AOC2), so we also show in
this section that (AOC1) and (AOC2) also hold when Reduce Gap finishes. The
correctness proofs in this section rely on the specific formulas chosen for ∆(x′, π).
Those formulas were based off how far away our particular values of T (v) were from
the bounds that we need in order to satisfy (AOC2) and (AOC3). And so, they are
used to prevent us from going outside our bounds during Reduce Gap.

5.3.1 Push-Relabel

Based on the stopping condition for Reduce Gap, when Reduce Gap is finished,
(AOC3) holds immediately. However, we do need to show that Reduce Gap actually
terminates, and then show that after it terminates, (AOC1) and (AOC2) also hold.

This is why our specific formula for ∆(x′, π) was chosen. By bounding how much
flow we can send from s to t, we can bound how much T (v) changes.

Because we know that the flow sent during a flow step of Reduce Gap cannot
exceed ∆(x′, π) for the flow x′ and potential π prior to the flow step, we will be able
to upper bound the value of πs − πt,

πs − πt ≤ T (v′)− 5nε

where v′ is the value of the new flow after the flow step. This is easily done by upper
bounding the change in flow value and rearranging the variables in ∆(x′, π) so that
πs − πt is on the left hand of the ≤ inequality. [6]

During Reduce Gap, the sink node t will never have its potential increased because
it is never an active node, and the sink node s purposefully also never has its potential
increased, thus π′s and π′t are the same throughout all the potential changes, and so
this upper bound for πs − πt holds after Reduce Gap is terminated.

(AOC1) holds after Reduce Gap because if a node w is reachable from s during
the potential step, then for any arc (w,w′), if w′ is reachable then e is admissible and
so τπe doesn’t change. Otherwise, e is non-admissible and so τπe > 0. For any arc
e = (w′, w), just by definition τπe cannot decrease since all potentials are increased
by the same amount, ε, during a potential step.

5.3.2 Cancel-and-Tighten

In [7], the approximate optimality conditions (AOC1) and (AOC2) are always sat-
isfied at the end of the refine step. Then, the purpose of the reduce gap step is to
ensure that (AOC3) can be satisfied while maintaining (AOC1) and (AOC2). Recall
that for Cancel-and-Tighten, we push flow along admissible paths until (AOC3) is

12

satisfied. So, will the procedure terminate? Using a lot of algebra, Saho and Shigeno
show that each iteration of the procedure increases πs − πt by ε, so progress will
definitely be made, until πs − πt ≥ T (v), at which point (AOC3) will be satisfied.
The proofs that (AOC1) and (AOC2) are maintained are essentially the same as for
Push-Relabel except that for (AOC2), we get a tighter bound because our stopping
condition is different.

5.4 Final Step

Now that we’ve gotten ε really small, we know that there are no negative cycles in
the residual graph, so it is a min cost flow and (OC1) must be satisfied. Again, this
is because ε < 1/n and the flow is ε optimal. Thus every cycle will have cost > −1.
But because the costs are integers, this implies that there are no negative cycles in
the residual graph.

Finally, (AOC1) and (AOC2) is satisfied, so (OC2) must be satisfied. However,
(AOC3) being satisfied does not imply that (OC3) is satisfied because (OC3) gives a
tighter bound than (AOC3). If it happens that (OC3) is satisfied, then we are done.
Otherwise, let Gs(x) denote the subgraph induced by all arcs of the residual graph
which are on a shortest s − t path. We can satisfy (OC3) by finding a maximum
flow y in the Gs(x) and updating x by pushing the maximum flow y from s to t.
Let us call the updated flow x∗.

Because we augment only using shortest s−t paths, we know that x∗ also satisfies
(OC1) and so is a min cost flow. Now, because there cannot be negative cycles in x,
we know that dst(x) = −dts(x∗). Thus, because the flow in x∗ is greater than in x,
we get that (OC2) holds. (AOC3) in conjunction with ε < 1

8n
, which is the stopping

condition for the full algorithm, means that T (v)−dst < 1. Because of integer costs,
we know that dst(x) + 1 ≤ dst(x

∗) since the shortest path must increase when all
shortest paths in x are saturated in Final Step. This then gives us that (OC3) holds.
Thus, we have that all three optimality conditions (OC1), (OC2), and (OC3) hold
and so x∗ can be temporally repeated to get a quickest flow.

6 Runtime Analyses
Note that the biggest difference between Goldberg and Tarjan’s Push-Relabel al-
gorithm and Lin and Jaillet’s algorithm was the addition of the Reduce Gap step
during every iteration of the scaling phase. The same thing can be said for Goldberg
and Tarjan’s Cancel-and-Tighten algorithm and Saho and Shigeno’s algorithm.

Now for both algorithms, preprocessing and Final Step involve running at most
one max flow iteration, and so their overall runtimes will be dominated by their cost
scaling phases.

Thus, if their Reduce Gap can have the same runtime as the Refine step for
their respective cost scaling min cost flow algorithm, then the runtimes of the two
quickest flow algorithms will have the same time complexity as the cost scaling min
cost flow algorithm they were modeled after.

Both papers use the dynamic tree data structure introduced by Sleator and
Tarjan as black boxes to improve the runtime of their algorithms, so we will do the
same throughout our runtime analysis. [8]

13

6.1 Push-Relabel

There are a total of O(log(nC)) cost scaling phases and each phase contains one
iteration of Refine and one iteration of Reduce Gap. An analysis from the original
Goldberg and Tarjan paper [5] shows that each iteration of Refine is bounded by
O(n3).

By bounding the number of times each node, in particular the source node s,
can participate in a potential step by O(n), we are able to bound the number of
saturating flows calls pushed during flow steps by O(mn) and non-saturating flows
pushed during flow steps by O(n3) by considering how many consecutive Push calls
can be made before there are no more active nodes. Thus, the runtime of a single
Reduce Gap iteration is O(n3). The full details of the derivation can be found in
the Lin and Jaillet paper. [6]

Thus, the runtime of the Push-Relabel quickest flow algorithm is the same as the
Push-Relabel min cost flow algorithm, which had its O(n3 log nC) runtime improved
using dynamic trees to get the weakly polynomial runtime

O

(
nm log

(
n2

m

)
log(nC)

)
. [5]

6.2 Cancel-and-Tighten

Similarly, the runtime of the Relabel phase using dynamic trees is O(nm log(n)).
The analysis can be found in the Golberg and Tarjan Cancel-and-Tighten paper. [4]

Naively, the runtime per iteration of Reduce Gap in Cancel-and-Tighten would
be the same as in Push-Relabel because the procedure is almost identical between
the two. However, an analysis that can be found in the original paper using fixed
arcs - essentially arcs whose reduce costs will not change as ε gets smaller - takes
advantage of the tighter approximate optimality conditions for Reduce Gap to get
a better runtime. Again, dynamic trees are used to get the strongly polynomial
runtime of

O(nm2 log2 n). [6][4]

7 Conclusion
The two algorithms described in this paper can serve as a template to convert future
cost scaling min cost flow algorithms into quickest flow algorithms with the same
time complexity. Because the quickest flow problem is equivalent to solving the min
cost flow problem with added optimality conditions, as long as we can alter the
cost scaling, min cost flow algorithms to maintain certain approximate optimality
conditions throughout the algorithm that are equivalent to the real optimality con-
ditions when we scale our costs down to a small enough ε, we will have found a
quickest flow. As these two algorithms showed, this may require the use of a Reduce
Gap step with algorithmic-specific constants to maintain the bounds during each
scaling phase. But as long as this Reduce Gap has the same runtime per iteration as
the Refine steps in the original cost scaling min cost flow algorithms, we will have
successfully taken the min cost flow algorithm and turned it into a quickest flow
algorithm with the same runtime. Not only does this framework show that dynamic
quickest flow problems are no more complicated than min cost flow problems, it also

14

gives us a malleable way to take an algorithm for one problem and convert it to an
algorithm that solves the other.

8 Acknowledgments
We would like to thank Professor Karger for teaching this course. We also would like
to thank Andy Wei and Rogers Epstein for their part in reviewing and improving
our paper.

References
[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows:

theory, algorithms, and applications. 1993.

[2] Rainer E Burkard, Karin Dlaska, and Bettina Klinz. The quickest flow problem.
Zeitschrift für Operations Research, 37(1):31–58, 1993.

[3] Lester Randolph Ford Jr and Delbert Ray Fulkerson. Flows in networks. Prince-
ton university press, 2015.

[4] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations
by canceling negative cycles. J. ACM, 36(4):873–886, October 1989.

[5] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations
by successive approximation. Math. Oper. Res., 15(3):430–466, July 1990.

[6] Maokai Lin and Patrick Jaillet. On the quickest flow problem in dynamic net-
works: a parametric min-cost flow approach. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1343–1356. Soci-
ety for Industrial and Applied Mathematics, 2015.

[7] Masahide Saho and Maiko Shigeno. Cancel-and-tighten algorithm for quickest
flow problems. Networks, 69(2):179–188, 2017.

[8] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
J. Comput. Syst. Sci., 26(3):362–391, June 1983.

15

	Introduction
	Background
	Problem Description
	Network Concepts

	Optimality Conditions
	Algorithm Descriptions
	Framework
	Refine
	Push-Relabel
	Cancel-and-Tighten

	Reduce Gap
	Push-Relabel
	Cancel-and-Tighten

	Final Step

	Correctness Proofs
	Approximate Optimality
	Refine
	Push-Relabel
	Cancel-and-Tighten

	Reduce Gap
	Push-Relabel
	Cancel-and-Tighten

	Final Step

	Runtime Analyses
	Push-Relabel
	Cancel-and-Tighten

	Conclusion
	Acknowledgments

