Predicting Early Inpatient Readmission of Psychiatric Patients with Insurance Claims Data

Massachusetts Institute of Technology

Sooraj Boominathan, Christopher Wang, Kevin Weng

6.S897: Machine Learning for Healthcare

Introduction

- Early patient readmission is major, preventable driver of psychiatric healthcare costs
 - Substantial concern for chronic / recurring disorders
- Ability to predict readmission can help develop interventions targeted towards patients at risk and reduce costs
- Prediction from admission data difficult due to lack of clear signal of patient severity / symptoms in diagnosis / procedure codes
- **Goal:** (1) Predict readmission within various time windows, (2) Understand underlying phenotypes that explain readmission

Dataset

- Used MarketScan Database, a health insurance claims dataset containing demographics, diagnosis, procedure, and medication codes from 2011-15 [2]
- Considered patients with an inpatient admission anytime between 2011-14 for a mood disorder (ICD code=296.xx)
 - Bipolar disorder, depression, schizophrenia, etc.
- **Cohort**: Inpatient admissions for these patients with a mental disorder diagnosis group and discharge to home
 - Train set: admissions from 2011-13
- Previous work has used clinical text to predict readmission [1]
- We use insurance claims data to predict readmission subset of the information available to physician at time of treatment

Methods

Feature Construction

- **Basic one-hot representation:** one-hot vectors of a patient's diagnosis, procedure, and medication codes
 - Additional features: Number of past visits, admission duration, time since previous admission
 - Diagnosis / procedure codes in admission history collapsed into same vector as current admission
- Basic embedding representation: Used 300-dim. embeddings of medical codes learned from claims data [3]
 - Codes for similar / related concepts close to one another in embedding space

• Test set: admissions from 2014 (removed any patient overlap with train set)

		Dataset Statistics				
	Train	Test				
Admissions	12,768	3,062				
Patients	9,417	2,616				

	Cohort Readmission Rates					
	Time Window	Overall	Train (2011-13)	Test (2014)		
	30 day	0.127	0.132	0.108		
I	90 day	0.213	0.222	0.174		
	180 day	0.275	0.288	0.223		

Prediction

Embeddings significantly improved test AUC on 30 day prediction task; smaller improvements observed for 90 and 180 day tasks

Task	LR + One Hot	LR + One Hot + History	LR + Embeddings	NN + Embeddings
30 day	0.619	0.621	0.648	0.655
90 day	0.629	0.629	0.640	0.643
180 day	0.639	0.638	0.644	0.645

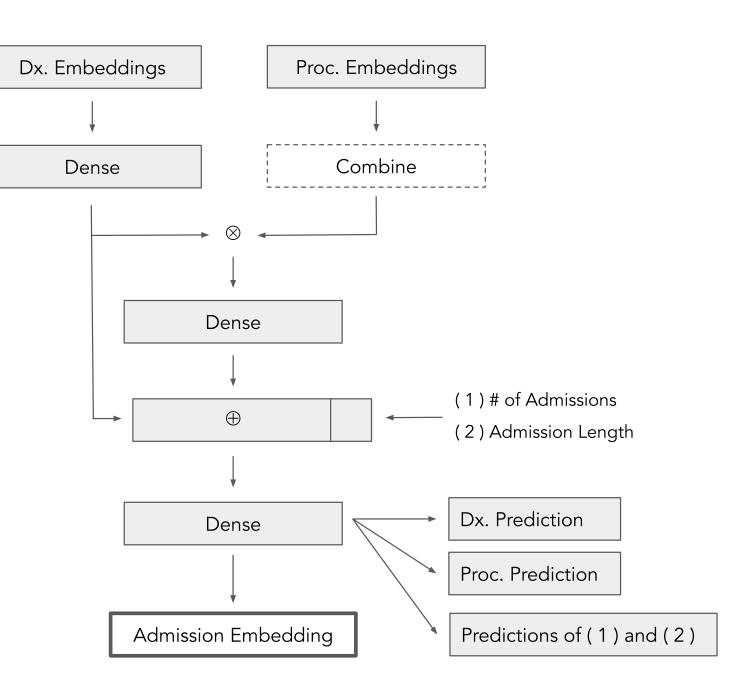
Neural networks trained on embeddings avoided overfitting with less regularization than using one-hot vectors

Results

- Including past history of diagnoses / procedures or medication data did not significantly help prediction
- Modeling history with LSTMs did not yield improvement
- Top positive predictors for 30-day readmission: # of visits, bipolar disorder diagnosis, schizoaffective disorder, unspecified psychosis, 18-34 age group
- Averaged all embeddings associated with admission to obtain embedding for a given admission
- Labels: Binary was patient readmitted within specified time window from admission discharge date?

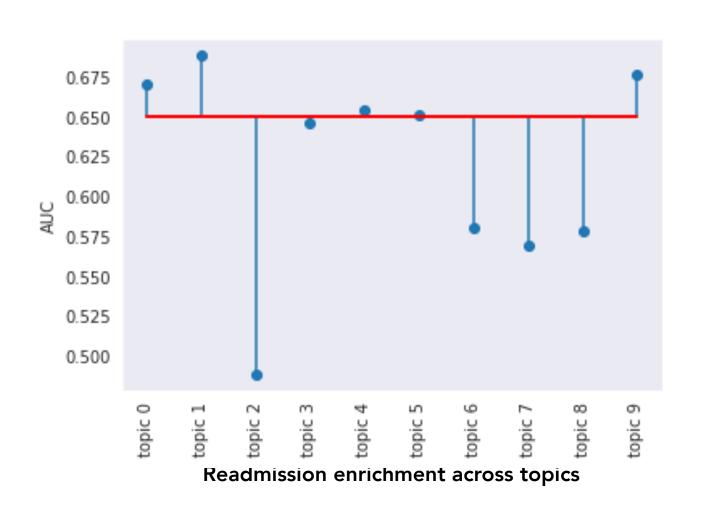
Learning Admission Representations

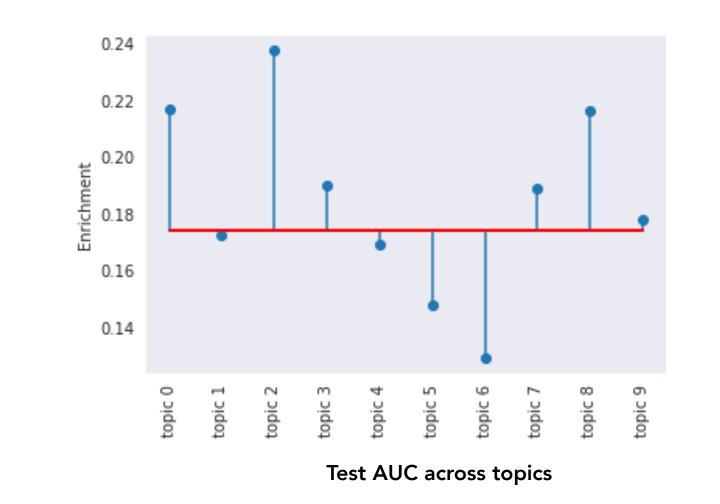
- Goal: Learn low-dimensional representations of individual inpatient admissions
- Developed an admission "autoencoder" architecture which takes pre-trained embeddings of ICD9 and CPT codes [3] as input
- Train neural network to learn 300-dim. representation of admission that predicts the diagnoses / procedures



Topic Modeling

Торіс	Words in order of importance	
0	Electrocardiogram report, Unspecified essential hypertension, Age 55-64, Chest x-ray, Chest pain (unspecified), Diabetes (no complications)	
2	Abdominal pain (unspecified site), Abdominal procedures, Other chronic pain, Female, Nausea with vomiting, Bipolar disorder (unspecified)	
6	Female, Region - South, Suicidal ideation, Major depressive affective disorder (recurrent, severe, no psychotic behavior), Major depressive affective disorder (single episode), Age 35-44	





Conclusions / Future Work

associated with admission

 Captures interactions between procedures / diagnoses within admissions

Prediction

- Trained logistic regression models and simple feedforward neural networks with dropout
- Used 80/20 train/validation split for hyperparameter tuning

Topic Modeling

- Used Latent Dirichlet Allocation to model the underlying health states as topics
- "Document" = patient admission history, "Words" = diagnosis/ procedure/medication codes for patient

- Learned representations for individual admissions improves readmission prediction, particularly in short term
- Modeling topics for patient data reveals diversity of underlying health states
- Future work: (1) Understand causal relationships between underlying health states and readmission, (2) Train models fine-tuned for performance on different subpopulations, (3) Model temporal structure of admissions more effectively

References

[1] Rumshisky, A., et al. "Predicting early psychiatric readmission with natural language processing of narrative discharge summaries." Translational psychiatry 6.10 (2016): e921

[2] Adamson, David M., Stella Chang, and Leigh G. Hansen. "Health research data for the real world: the MarketScan databases." New York: Thompson Healthcare (2008).

[3] Choi, Youngduck, Chill Yi-I. Chiu, and David Sontag. "Learning low-dimensional representations of medical concepts." AMIA Summits on Translational Science Proceedings 2016 (2016): 41